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Spatial Scaling in Human Mobility Models

Abstract
Human mobility models are mathematical frameworks that capture and predict the
statistical properties of the movements of people, at the individual or collective level.
Despite their significant success in the predictive analysis of commuting and migration
flows, the spread of diseases and other aspects of human dynamics, all models are tai-
lored to either small (cities) or large (countries) length scales. Therefore no unique
framework has yet been developed to provide an accurate description of mobility flows
at multiple spatial scales.
Here, we conduct a study of the scale-dependence of the gravity and the radiation law,
and find a measure of the error introduced in the estimated flow when rescaling a system
through a renormalisation procedure.
We illustrate our framework through simulations using a toy model and the real popu-
lation distribution of London and Birmingham and observe strong agreement between
our analytical predictions and the simulated results. We find that the gravity model is
generally more robust to changes in the spatial scale, provided the deterrence function
is correctly calibrated to a given coarse-graining level.
We suggest a quantitative approach to minimise the scaling error and provide a func-
tional relationship of the distance exponent in the power-law gravity model.
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Chapter 1

Introduction & Overview

1. Human Mobility
The study of human mobility is of primary importance in understanding many social
and biological processes: as extensively reported in the literature, statistics on human
movements are pivotal in explaining the distribution of economic activities, the spread of
information, congestion patterns, the structure of cities and the propagation of infectious
diseases [1].

Starting from the second half of the 19th century, attempts to frame mobility phe-
nomena such as migration [2] within a formal setting gave rise to the first quantitative
treatments of human mobility. Following these early efforts, the last century witnessed the
development of several mathematical models that attempt to refine our understanding of
movements at both the individual and the population level, together with the mechanisms
that drive them. These models have proven accurate to various degrees and continue to
serve both practical and scientific purposes, as they can have far-reaching implications in
a broad range of contexts, such as urban planning [3, 4], the design of public transport
infrastructures, epidemiology [5, 6], emergency response [7] or archaeology [8], among
others. These frameworks are particularly useful in data-scarce contexts, where their
ability to predict human flows can be used as a forecasting or planning tool. Here we
are exclusively concerned with population-level models, whose main aim is to capture the
aggregate movement of people by estimating the statistical distribution of trips between
spatial units.

1.1 The role of spatial scale in human mobility

The increasing availability of digital traces provided by GPS and mobile phone records
allows us to easily obtain geographical information and gain new insights from the study
of spatial interactions between people. Owing to the heterogeneity of the data granu-
larity and the multiscale nature of human interactions, which can span several orders of
magnitude, any reasonable framework that aims to describe and predict mobility patterns
should be both universal and scale-invariant [1].

Far from being merely a desirable feature, the property of universality may also be
necessary on theoretical grounds to provide a coherent picture of phenomena of human
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2. HUMAN MOBILITY MODELS

interactions at all spatial scales. This conjecture is further corroborated by the several
examples of scaling behaviour of human phenomena at the individual level [9, 10]. There
exists in fact a vast body of literature within the fields of geography, social sciences
and complexity science, dedicated to uncovering the scaling laws characterising spatial
interactions of people, ranging from the traditional Zipf’s law [11] to the more recent
discoveries of scaling relations characterising movement in cyberspace [12].

At the population-level, however, the scaling properties of human mobility are, perhaps
surprisingly, still largely unexplored. The majority of the macroscopic models proposed
so far are in fact tailored to the description of mobility patterns within specific spatial
ranges [13]. This results in a different treatment of the flows depending on the length scale
of interest and the models therefore fail to accurately reproduce mobility patterns across
a wide range of scales. Moreover, as noted by Barthélemy, understanding the interplay
of different spatial scales in human interactions represents an interesting open question,
from a purely theoretical perspective [14]. Remarkably, the recently increasing interest
in the study of scaling properties within human laws has prompted the development of
new human mobility models that are intrinsically scale-invariant [15]. However, a strong
validation of these models on large sets of data is still missing and traditional models are
far from being replaced as the main modelling mechanisms.

Finally, despite a number of attempts to address the issue of the suitability of tra-
ditional models at varying spatial scales [13, 16], so far these comparisons have mostly
been carried out with reference to commuting data or other empirical trip distributions.
In contrast, we seek a more complete and data-agnostic approach, in which the scale de-
pendence of the models is probed by analysing their mathematical form and performing
simulations to validate our analysis. Ultimately, this project is motivated by the lack of
an adequate investigation of the role of spatial scales on models of spatial interactions at
the population level.

2. Human Mobility Models
2.1 General framework for mobility flows

We define a spatial system as a collection of units embedded in two-dimensional Euclidean
space. These spatial units can be administrative units (Chapter 4, Sec. 2) – boroughs,
cities and counties – artificial units – sites in a synthetic population (Chapter 3) – or
clusters of any of these types of units (Chapter 4). We model the interactions within a
spatial system using the standard framework of flow models. These refer to the movement
of entities – people, diseases, banknotes, ideas, etc. – as a mobility flow. A common way
to characterise space in order to analyse mobility flows within a system is to partition the
area of interest into cells and then define an origin-destination matrix (ODM), whose Tij
entries correspond to the number of people moving from cell i to cell j per unit time. This
allows us to treat aggregated mobility at different resolutions: starting from the maximal
resolution provided by the data (real or synthetic), the partitioning can be arbitrarily
chosen to fit the spatial scale of interest. The resulting OD matrix therefore encapsulates
all the information about the flows at the considered resolution. Although this is not
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2. HUMAN MOBILITY MODELS

always necessarily the case, we consider here the same spatial units to be both origin and
destination locations, thus obtaining an N ×N OD matrix. By convention, self-loops are
not considered, so Tii = 0,∀i and the OD matrix is a hollow square matrix characterising
the aggregate flows between units

T =


0 T12 . . . T1n
T21 0 . . . T2n
... ... . . . ...
Tn1 Tn2 . . . 0

 . (1.1)

Within the aforementioned flow models, two different schools of thought have dom-
inated the research landscape, one which argues that mobility is directly hindered by
geographical distance and one that instead ties the probability of a trip to the presence of
higher benefits in the surrounding area. The former is represented by the long-standing
gravity model, popularised in its modern form by Zipf [11], while the latter was introduced
through the recent radiation model, proposed by Simini et al. in 2012 [17]. These two
models have extensively been compared in the literature [13, 18, 19]. In fact, although
by no means exhaustive, the analysis and comparison of these two frameworks provides
a sufficiently complete overview of the most common advantages and limitations of the
spatial modelling of population flows. However, so far most of these studies have been
based on the analysis of their predictive performance against mobility patterns observed
in empirical data but do not provide sufficient insight into the fundamental difference
between them. For this reason, and given their popularity and diverging approaches,
we exclusively focus on these two modelling paradigms and conduct an analysis through
mathematical reasoning and numerical simulations with the aim of bridging the gap be-
tween the observed dissimilarities and our understanding of their mathematical structure.

In the two sections below, their mathematical formulation is reviewed, with an em-
phasis on their treatment of spatial scales and the main conventions used in this report
are established.

2.2 The gravity model

The gravity model, in its most general form, hinges on the assumption that the mobility
flow Tij from site i to site j is governed by a law similar to that of the gravitational
interaction between two bodies. That is, this interaction is proportional to the product of
their respective populations mi and mj and decays with the distance rij between them.
The number of trips Tij between i and j is then predicted to be

Tij ∝ mimjf(rij). (1.2)
In this framework, the population is used as a proxy for the attractiveness of the

location and the cost of travelling is encapsulated by the deterrence function f , which
expresses the relationship with distance and most commonly takes the form of an expo-
nential or power law decay [20]:

fe(rij) = e−γrij (1.3a)

3



2. HUMAN MOBILITY MODELS

fp(rij) = r−γij , (1.3b)

where γ is the distance exponent. Although various definitions of distance (time of travel,
social distance, road distance) can and have been used [18], in the context of this report,
we always refer to the Euclidean distance between two spatial units.

In order to create a general framework and compare the predicted flow across different
models on an equal footing, our aim is to obtain a trip distribution law or, in other words,
express the flow as the relative number of trips originating in i and terminating in j. To
accomplish this, we rewrite Eq. (1.2) as

Tij = Oipij, (1.4)

where
Oi =

∑
j

Tij (1.5)

is a constant for each unit i and pij, representing the probability that an individual located
at i travels to j, is subject to the constraints∑

j

pij = 1, pij ≥ 0. (1.6)

This is referred to as the production-constrained version of the gravity model [21], in which
the total number of trips “produced” by each site, the outflow Oi, is fixed. For simplicity,
throughout this paper we take

Oi = mi, (1.7)

so that all individuals within the population of i have a non-zero equal probability of
travelling. Although of course real systems depart from this simplification because of
differences in social structures, it is reasonable to assume that the outflow of a given
location is at least proportional to its population. Moreover, since, for the purpose of our
analysis, only relative flows are relevant (Chapter 2), turning this proportionality into an
identity can be done without loss of generality.

This hence allows us to obtain the trip distribution law for the gravity model:

pij = kimjf(rij), (1.8)

where, to satisfy the marginal constraint in Eq. (1.5), we have introduced the normalisa-
tion factor ki, which takes the form

k−1
i =

∑
j

mjf(rij). (1.9)

It is worth noting that the presence of the distance parameter γ requires that the de-
terrence function be calibrated to the observed dataset. This is typically done through a
regression analysis [22] and can yield different results even within the same dataset. This
inconsistency has important implications for the physical interpretation of the deterrence
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2. HUMAN MOBILITY MODELS

Figure 1.1: Representation of the radiation model. Site i and j are the origin and destina-
tion locations respectively and rij the physical distance between them. The probability of a trip
from i to j depends on the total population within the disk sij .

function, since simple dimensional arguments are not suitable to correctly estimate the
value of the distance exponent. An open questions is then how the parameter γ is influ-
enced by changes of the spatial distribution of locations. Moreover, the introduction of
the normalisation factor ki in the equation of the flow breaks the symmetric structure of
the unconstrained gravity model so that in general pij 6= pji.

2.3 The radiation model

The radiation model borrows its main idea from the particle diffusion process in physics.
Formulated in terms of job opportunities and job-seeking individuals [17], the law is mo-
tivated by the heuristic assumption that a commuting trip takes place when an individual
finds the closest job opportunity which offers him/her benefits z higher than the best ben-
efits available in his/her origin location. The model can then be generalised to estimate
the volume of trips between two locations based only on the information encoded in the
population distribution.

Thus, by considering the probability of an individual travelling between i and j, in
analogy with the probability of an absorption event as studied in the physical sciences,
the average flux 〈Tij〉 from location i to location j can be expressed as

〈Tij〉 = Oi
mimj

(mi + sij)(mi +mj + sij)
, (1.10)

where sij is the total population residing in a circle of radius rij (Fig. 1.1), excluding the
origin and the destination, and the other terms are as defined in the previous sections
(2.1, 2.2).
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3. MOTIVATION & OUTLINE

Moreover, we note that Eq. (1.10) is derived in the thermodynamic limit and therefore
requires a normalisation factor for the correct treatment of a finite system. Including this
factor, originally derived in [13], we therefore obtain the trip distribution law in the same
form as for the gravity model

pij = Oi

1− mi

M

mimj

(mi + sij)(mi +mj + sij)
, (1.11)

where Oi is the outflow of location i as defined in Section 2.2 and M = ∑
imi is simply

the total population in the area of interest.
As can be observed from Eq.(1.11), the estimated flow in the radiation model does not

directly depend on the distance rij and the model, unlike the gravity law, is parameter-
free. This represents the most notable feature of the radiation law, which is therefore able
to estimate trip volumes only from the population density. Although in the original paper
the authors show evidence of scale-invariant properties in commuting flows predicted by
the radiation model, we will show later that we do not recover this characteristic under
our rescaling framework.

3. Motivation & Outline
Despite the success of these models, dedicated tools for uncovering their scaling behaviour
are poorly developed. In essence, in modelling human mobility, both the gravity and the
radiation model overlook the spatial dependence of their predictions. The central aim
of our study is therefore to comparatively assess the scale-dependence of the gravity and
the radiation model and propose a procedure to adapt the gravity law to different coarse-
graining levels of a population distribution.

The motivation behind this research is twofold: mobility data might not always be
available at the desired resolution; in the absence of a suitable dataset, it is then particu-
larly useful to have a modelling framework that can adapt to a coarse-grained picture of
the spatial system. Moreover, as traditional transport surveys become obsolete and small-
scale mobile tracking takes its place, multiscale modelling approaches become increasingly
important. To address these problems, we explore the following three questions:

1. Does the structural difference in the mathematical formulation of the gravity and the
radiation model result in a divergent treatment of different spatial scales? (Chapter
2)

2. What is the error introduced in the predicted trip distribution when rescaling a
spatial system in a simplified framework? (Chapter 3)

3. Can we upscale, thus substituting a fine-scale population distribution by a coarser
one, without introducing significant error in a real population distribution? (Chap-
ter 4)

In order to provide an answers to the above, we structure our study in the following
way:

6



3. MOTIVATION & OUTLINE

• We define a quantitative metric (ε) of the discrepancy introduced in the estimated
flow between locations when coarse-graining a spatial system

• We derive the analytical form of the scaling error ε for the gravity (exponential and
power-law form) and the radiation model in a simple case (two locations clustered
at once within a synthetic population distribution).

• We develop computational simulations of simple spatial systems (random distribu-
tion of locations with a uniform population distribution).

• We compare the simulated results to the ones predicted by the theory, finding good
agreement between the two, and determine the validity of our assumptions and
approximations.

• We extend this procedure to a realistic system by rescaling real UK population dis-
tributions in two urban areas by means of the hierarchical agglomerative clustering
algorithm.

• We assess the multiscale accuracy of the gravity and the radiation model against
our metric and reveal systematic discrepancies between different spatial scales.

• We suggest an optimisation procedure to rescale the distance parameter (exponent
γ) in the gravity model so as to minimise the error ε.

7



Chapter 2

Theoretical Analysis

In real mobility flows, the process of aggregating spatial units can be thought of as a
linear transformation of the spatial system. For each lower-resolution unit, comprising
of n neighbouring units in the original distribution, the resulting collective flow thus
equates the sum of the flows attributed to each sub-unit. For example, the number of
people moving from London to Birmingham exactly corresponds to the sum of the trips
originating from all the boroughs within London and terminating in any area within
Birmingham. Therefore, starting at any granularity level, we can always coarse-grain
a spatial system (e.g. population distribution) to form bigger spatial units of arbitrary
surface areas and recover the real flow between these units. As a result of this, we
deduce that the trip distribution per se is invariant or self-similar under a length-scale
transformation.

When modelling collective movements of people, however, mobility models introduce
highly nonlinear parameters with the aim of reducing the complexity associated with
explicitly tracking the trajectory of a person, as done instead in individual mobility mod-
els. This makes the rescaling process, and consequently the effect of spatial scale on the
models’ predictions, a nontrivial problem.

Hence it is an interesting question whether the discrepancies introduced by the models
result in near self-similar properties of the mobility network when this is subject to a
rescaling procedure or whether the error introduced is in all cases non-negligible. This
motivates our theoretical analysis of the problem.

1. Definition of the scaling error ε
In order to estimate the error resulting from an arbitrary coarse-graining procedure like
the one represented in Fig.2.1, we define the fractional difference between the flow after
rescaling the system and the total flow at the base level. The rescaling step simply consists
of grouping an arbitrary number of locations into two clusters a and b. The guiding idea
is that, since both the radiation and the gravity model produce an output that, directly
or indirectly respectively, depends on the population distribution, varying this results
in an altered output flow. As the extent of this variation cannot be straightforwardly
inferred from the model, it is useful to introduce a new measure to encode this change.
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2. TOY MODEL OF THE SCALING ERROR

Figure 2.1: Example of an arbitrary aggregation of 4 units into 2 clusters, a and b. The solid
arrow represents the flow probability pab from cluster a to cluster b when the clusters are considered
as units within the distribution. The dashed arrow represent the mobility flow probability pij from
each sub-unit i within cluster a to each sub-unit j within cluster b.

The resulting quantity, which we call the scaling error, is thus defined as follows

ε := 1−
∑
i∈a,j∈b pij
pab

, (2.1)

where pij represents the number of trips from any location i within cluster a to any
location j within cluster b and pab is the aggregate flow between clusters a and b. The
difference between the numerator and denominator in Eq. (2.1) arises from the fact that,
after the rescaling step, a and b are treated by the models as single locations. The exact
value of ε therefore depends on how their position is chosen. In summary, the scaling error
ε can be regarded as the relative bias introduced by modelling the flows at an aggregated
level compared to the spatial distribution at the finest resolution. Since this provides
the highest level of information about the variables characterising the spatial system, it
is reasonable to assume that, at least on theoretical grounds, the finest resolution level
should yield the most accurate representation of mobility patterns for a given system.

2. Toy model of the scaling error
Since the population distribution is typically highly heterogeneous, it is not straightfor-
ward to treat our model for the scaling error exactly. In order to be able to deal with
the heterogeneity of the population distribution analytically, we first consider a simplified
scenario by generating a synthetic population and imposing the following approximations:

• All locations are independently uniformly distributed in space

9



2. TOY MODEL OF THE SCALING ERROR

• The population density is homogeneously distributed among the locations, i.e. mi =
1, ∀i

• Only two locations {i, j} are clustered at any one time

• The distance between the two clustered locations rjk � rib, the distance between
the origin i and the cluster b

For the sake of simplicity, we also restrict our study to forwards flows (from the unclus-
tered location i to the cluster b). Therefore, in this analysis, which we will refer to as
tripoint, only the parameters of three locations are varied at any one time, while the rest
of the population distribution is left unchanged. An estimation of the scaling error is then
obtained by probing the difference in the predicted flow when the destination is regarded
as two separate sub-areas or as a single zone. Although naive, this method allows us to
quantitatively assess the performance of the gravity and the radiation model in terms of
their spatial dependence, while abstracting from other effects which may be due, for ex-
ample, to a heterogeneous population distribution. In this simplified tripoint framework,
we obtain the following form for the scaling error:

ε = 1− pij + pik
pib

. (2.2)

The next two sections provide a detailed derivation of the analytical form of ε for the
two human mobility models here considered.

2.1 Derivation of the scaling error in the gravity model

Due to the fact that the normalisation factor ki in the gravity model equation (1.9)
depends on the distance between the origin i and all other locations, the form of ki is
affected by the spatial distribution of the sites. Consequently, the predicted volume of
spatial interactions varies when changing the granularity level, like done in our tripoint
scaling procedure.

The analytical form of the scaling error ε for the gravity model with an exponential
deterrence function can be derived by substituting (1.2) into (2.2)

εe = 1− mje
−γrij +mke

−γrik

mbe−γrib

ki

k̃i
, (2.3)

where we have denoted the normalisation factor after rescaling as k̃i. We first consider
the pre-scaling normalisation factor ki and decompose it as follows

k−1
i =

∑
l 6=j,k

mie
−γril +mje

−γrij +mke
−γrik . (2.4)

In an analogous way, we can then write k̃i as

k̃i
−1 =

∑
l 6=b

mie
−γril +mbe

−γrib , (2.5)

10



2. TOY MODEL OF THE SCALING ERROR

where we note that ∑
l 6=j,k

mie
−γril =

∑
l 6=b

mie
−γril . (2.6)

For a sufficiently high number of locations N , the RHS of Eq. (2.4),(2.5) is dominated
by the summation, so that the terms outside it are negligible:∑

l 6=b
mie

−γril � mbe
−γrib ' mje

−γrij +mke
−γrik . (2.7)

As a consequence, k̃i ' ki and the expression for ε can be reduced to

εe = 1− mje
−γrij +mke

−γrik

mbe−γrib
. (2.8)

Provided that rib � rjk, it is then reasonable to approximate rij ' rik ' rib. Since we
know by definition that mb = mi + mj, we can then assume the approximation in (2.7)
holds. In Appendix A we show that this is the case if the total number of locations N is
large enough. Finally, noting that

rij ' rik '
√
r2
ib +

(
rjk
2

)2
, (2.9)

as clear from the diagram in Figure 3.1, (2.8) can be rewritten as

εe = 1− e−γ(rij−rib). (2.10)

The same derivation can be followed for the power law form of the deterrence function
f(rij) = r−γij to obtain

εp = 1−
mjr

−γ
ij +mkr

−γ
ik

mbr
−γ
ib

. (2.11)

For mb = mj +mk and rij ≈ rik, this also simplifies to:

εp = 1−
(
rij
rib

)−γ
. (2.12)

Strikingly, in the case of uniform population density, the mass-dependency vanishes
and the result for the scaling error is only a function of physical distances. The analytical
expressions in Eq.(2.12) and (2.10) reveal that the scaling error decreases with the distance
between the origin location and the destination cluster, suggesting, as intuitively expected,
that the predicted flow from i is less sensitive to variations in the distribution far away
from its position. On the other hand, the equations also tell us that an increasing intra-
cluster distance yields a higher scaling error.
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2.2 Derivation of the scaling error in the radiation model

Similarly, we can derive the analytical form for the scaling error ε when applying the
tripoint analysis to the radiation model. In this case, we replace the flow p in the general
equation for ε (Eq. (2.2) with the radiation trip distribution law in Eq. (1.11) to obtain

ε =1−
�
�
�
�mi

1− mi

M

 mimj

(mi + sij)(mi +mj + sij)
+ mimk

(mi + sik)(mi +mj + sik)



�
�
�
�1− mi

M

mi

(mi + sib)(mi +mb + sib)
mimb

=1− �2
(1 + sij)(2 + sij)

(2 + sib)(3 + sib)
�2

,

(2.13)

where we have used the fact that mi = 1,∀i. We can now make use again of the homo-
geneity of the population distribution to note that, in this case,

sij = ρπr2
ij. (2.14)

Similarly to the previous case, if r2
ij ' r2

ik, we can further assume sij ' sik to simplify the
expression. We then substitute the equation for sij and sib to obtain the final equation

εr = 1− ��ρπr
2
ib

��ρπr
2
ij

(2 + ρπr2
ib)

(1 + ρπr2
ij

. (2.15)
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Chapter 3

The Tripoint Model

1. Method: simulation of the tripoint model
In order to validate our model for the scaling error ε, we start from the simple tripoint
case and simulate the mobility flows by generating a synthetic population with N ≈ 100
locations randomly distributed on a two-dimensional plane with uniform density. This
allows us to easily keep control of all the variables at play and ensure that the variations
in the flow are solely due to the rescaling process and not to other effects.

A built-in random number generator is used to produce N pairs of coordinates inde-
pendently and uniformly distributed across the interval [0, 1], thus effectively populating
a unit square through a point process. The synthetic population thus obtained neglects
socio-economic and demographic features and purely serves as a proxy for an idealised
spatial system. Given our aim of comparing the models on a purely mathematical ground,
we are not concerned with reproducing a realistic scenario at this stage.

A tripoint grouping procedure is then implemented on the obtained population distri-
bution with the aim of reproducing the mathematical framework described in Section 2
of Chapter 2. We do so by means of two different approaches and develop two algorithms
to implement them, which we call the sampled tripoint algorithm and the explicit tripoint
algorithm. Both these procedures yield the value of ε in relation to two quantities of
interest: the distance rib between the origin and the destination cluster b and the distance
rjk between the clustered locations (Fig. 3.1). Our ultimate goal is in fact to identify the
spatial range over which the error ε can be considered small enough so that the models
effectively scale with distance, that is, we obtain a near scale-invariant behaviour.

All distance variables in this Chapter are rescaled by their typical separation ∼ 1√
(N)

.

1.1 The sampled tripoint method

The first method to implement the tripoint clustering consists of a probabilistic approach
whereby, at each iteration, one pair of nearest-neighbour sites {j, k} is grouped together
to form a cluster (Fig. 3.1). After this simple clustering step, the value of ε is calculated
according to Eq. (2.1) and the procedure is iteratively carried out until all possible com-
binations of origin-destination triads have been explored. The algorithm then outputs the
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1. METHOD: SIMULATION OF THE TRIPOINT MODEL

Figure 3.1: Example of a tripoint aggregation. In (a) the origin-destination distance rib is
the Euclidean distance between origin i and the midpoint between j and k. In (b) the dashed arrows
represent the flow pij prior to the clustering step and the solid arrow illustrates the flow probability
pib from i to the new unit b formed by clustering j and k. Similarly, the tripoint configuration
comprises, at each iteration, of a cluster made of one among all the possible nearest-neighbour
pairs within the distribution.

array of N(N − 1) ε values resulting from the tripoint clustering of all the possible con-
figurations within the sample. An array of the spatial distances rib and rjk characterising
each configuration is also stored at each realisation of the simulation in order to allow for
the scaling error to be analysed as a function of the spatial scale. The nearest-neighbours
pairs are found by means of the ball tree algorithm implemented in the scikit-learn pack-
age 1, which was adopted in alternative to a naive linear search to benefit from a reduction
of the time complexity from O(N2) to O(logN). The complete algorithm is outlined in
Algorithm 1.

Given the probabilistic nature of the simulation, the synthetic population distributions
thus generated differ from one realisation of the simulation to the other and therefore the
stochastic behaviour was appropriately taken into account when extracting the results.
Specifically, the statistical fluctuations of the the results obtained through the sampled
tripoint process were treated with the moving average smoothing technique, in order to
expose the underlying distribution. A window of size w = 50 was chosen as this was found
to sufficiently filter the fluctuations while ensuring that the variance within each window
ranged from 0.1% to 3% of the scaling error. However, when dealing with the intra-
cluster distance, an additional binning procedure was necessary prior to the smoothing
step: since for each nearest-neighbours distance rjk, (N − 2) values of the scaling error
are found (one for each remaining site within the population), a more accurate result is
1 http://scikit-learn.org/stable/modules/neighbors.html#ball-tree
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1. METHOD: SIMULATION OF THE TRIPOINT MODEL

(a) (b)

Figure 3.2: Schematic diagram of the explicit tripoint method. At the initialisation step,
the origin location i is chosen with coordinates (xi, 0.5), while the destination units {j, k} are taken
so that xj = xk = 0.5. At the clustering step, either rib (0.01 < rib < 5) or rjk (0.01 < rjk < 1.5)
is varied, by moving the x-coordinate of i or the y-coordinate of j and k respectively, while keeping
the distance vectors perpendicular.

obtained by binning the multiple values corresponding to each rjk. From this, the average
value and standard deviation were extracted and further processed (Section 2).

1.2 The explicit tripoint method

An equivalent approach, the explicit tripoint algorithm, was developed to concomitantly
test the robustness of the tripoint construct by manually varying the position of the clus-
tered locations, as illustrated in Fig.3.2a, instead of sampling pairs of nearest neighbours
in the population. In this case, the destination pair {j, k} is horizontally aligned to the
centre the unit square (xj = xk = 0.5) so that rib can be easily be varied by simply moving
the position of the origin location i. Furthermore, we exploit the statistical independence
of the spatial distribution in the point process employed to create the synthetic population
in order to obtain reliable results by averaging over multiple simulation runs. This allows
us to reduce bias due to sample variability. Unlikely in the sampled tripoint method, in
fact, the deterministic variation of the distance between the tripoint configuration (i, j, k)
does not provide a . The final ε values are then computed by finding the mean and stan-
dard deviation over the n = 500 runs. To ensure consistency, the same seed was adopted
for the random number generator.

1.3 Extracting the tripoint scaling error

As described in Equations (2.10), (2.12) and (2.15), in both the mobility models consid-
ered, the scaling error ε explicitly depends on two variables: rib, the distance between
the origin location i and the destination cluster b, and rjk, the distance between the
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1. METHOD: SIMULATION OF THE TRIPOINT MODEL

two clustered locations. These two distances are varied independently of each other in
both the sampled tripoint process (Section 1.1) and the explicit tripoint process (Section
1.2). In the first case, this is guaranteed by the statistical independence of each sampled
point in the 2d-space, and in the second by the fact that the two lengths are explicitly
varied within a given interval. Therefore, we can observe this double dependence and
distinguish the effects of each variable through separate plots of ε as a function of rib and
rjk respectively. To do so, in plotting the relationship between the scaling error and the
variable of interest, we hold the other quantity constant. We choose these fixed values to
be close to the the mean inter-location separation 〈ril〉 and the mean nearest-neighbour
distance 〈rjk〉 ' 5.2 [23]. Specifically, for the sampled tripoint method, we can only keep
a variable constant when computing the analytical curve, while the numerical results nec-
essarily employ all possible configurations within the system. Moreover, since we restrict
the clustered pairs so that they are composed of nearest-neighbours only, we can expect
rjk � rib so that our assumptions are reflected in the computational experiment. In con-
trast, the explicit tripoint method allows us to explicitly fix one of the distance variables
and the only constriction in this case is dictated by the finite size of the system.

Algorithm 1 The sampled tripoint algorithm
Input: {xi, yi} i = 1, ..., N sampled from a uniform distribution
Output: εib

1: Generate P = {i} // population object
2: Compute O // OD matrix
3: Find the nearest-neighbour pairs
4: Store their indices {j, k} in array A
5: Store their distances rjk in array R
6: while {xi, yi} 6= ∅ do
7: Pick i // origin location
8: while A 6= ∅ do
9: Pick {j, k} // destination locations

10: if i /∈ {j, k} then
11: Create a copy P new of P
12: Remove {j, k} from P new

13: Add b to P new // cluster
14: mb ← mj +mk,
15: (xb, yb)← (xi+xj

2 , yi+yj

2 )
16: Compute Onew // new OD matrix
17: Compute εib // scaling error
18: end if
19: end while
20: end while
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2. RESULTS: ANALYSIS OF THE TRIPOINT SCALING ERROR

Algorithm 2 The explicit tripoint algorithm
Input: {xi, yi} i = 1, ..., N sampled from a uniform distribution
Output: εib

1: Generate P = {i} // population object
2: Add i, j and k to P
3: Compute O // OD matrix
4: Create a copy P new of P
5: Add i, b to P new

6: Compute Onew // new OD matrix
7: Compute εib // scaling error

2. Results: analysis of the tripoint scaling error
In Chapter 2, we have quantitatively defined the error ε introduced in the estimated
mobility flow when the resolution of a spatial system is varied. In Section 1 of this chapter
we have then constructed and simulated a simplified system, the tripoint configuration,
to study the behaviour of the scaling error when only the coordinates of two locations are
varied. Here we assess the performance of the gravity and the radiation model against
this metric by analysing the numerical results obtained when they are used to generate
the mobility flows.

2.1 Tripoint scaling error in the gravity model

We remark that the gravity model contains an adjustable parameter, the distance ex-
ponent γ, which is typically calibrated to the empirical dataset of interest. Since our
approach does not involve a comparison with real mobility data, it is not obvious how
to estimate this parameter. To this end, we refer to previous results and employ the
functional relationship proposed by Lenormand et al. (2016), which suggests that, for the
power-law form, the distance parameter follows γp = 0.3〈S〉−0.18, while for the exponential
form γe = 1.4〈S〉0.11, where 〈S〉 is the average unit surface (Fig. 4.9) [19]. By considering
the typical inter-site separation 〈rij〉 ' 1√

N
, we can approximate the average unit surface

〈S〉 ' 1
N

, thus obtaining γp = 0.84 and γe = 0.69.
We show here the results obtained for the power-law form of the gravity model. Similar

behaviour is exhibited by the scaling error when using the exponential distance decay
function and we include the full analysis of this case in Appendix B. All distance quantities
are rescaled by the typical inter-site separation ∼ 1√

N
.

As illustrated in the left column of Figure 3.3, we observe good agreement between
the analytical prediction for the scaling error and the data elaborated by our numerical
simulation. We find that the value of ε exceeds 0.05 only for rib below the typical inter-
site separation, i.e. becomes significant only when the grouping procedure affects the
immediate neighbourhood of the origin i. This is expected since the scaling error is based
on the idea that the contribution from locations at further distances is small.

17



2. RESULTS: ANALYSIS OF THE TRIPOINT SCALING ERROR

(a) Sampled Tripoint: ε vs rib (b) Sampled Tripoint: ε vs rjk

(c) Explicit Tripoint: ε vs rib (d) Explicit Tripoint: ε vs rjk

Figure 3.3: Relationship of the scaling error with distance in the power-law gravity
model. The blue markers indicate the numerical results obtained through the sampled tripoint
algorithm in (a)-(b) and the explicit tripoint algorithm in (c)-(d), plotted as a function of rib (left)
and rjk (right). The grey curve represent the analytical ε for the power-law gravity model in the
tripoint aggregation. In all plots, γ = 0.84 is used as the distance parameter of the deterrence
function. In the top panel, 〈rjk〉 = 0.5± 0.3 (a) and 〈rib〉 = 5.2± 2.2 (b) (extracted from multiple
simulation realisations) are used as the fixed values of the distance variable that is not plotted to
estimate the value of the analytical result with its confidence interval. In the bottom panel, the
fixed distance values are rjk = 0.5 (c) and rib = 4 (d), chosen to prevent the results from being
affected by edge effects.
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2. RESULTS: ANALYSIS OF THE TRIPOINT SCALING ERROR

(a) (b)

Figure 3.4: Ratio of the scaling error in the simulation and in the theoretical predic-
tion. The ratio does not significantly deviate from 1 in the spatial range studied. However, the
degree of agreement with the theory rapidly decreases for rib . 2. As above, γ = 0.84 and the
fixed distance values are rjk = 0.5 (a) and rib = 4 (b).

Conversely, the plots in the right column of Figure 3.3 show that ε increases as a
function of rjk, consistently with the fact that aggregating units spatially separated by
other locations results in considerable differences in the predicted flow. This suggests
that sites should only be clustered with elements positioned within their neighbourhood.
Nevertheless, even when the cluster b is composed of sites originally separated by a longer
distance than the typical inter-site scale, the error ε is below 0.02%. We also show the
ratio between the predicted and observed scaling error εana

εsim
and observe that this does not

significantly deviate from 1 in the expected range (Figure 3.4).

2.2 Tripoint scaling error in the radiation model

In the radiation model, we find that tripoint scaling error reaches values above 5% at
considerably large origin-destination distances (5 < rib < 7) and small enough intra-
cluster lengths (rjk < 0.25). This result means that the radiation model is highly sensitive
to small variations in the partitioning of the spatial system and suggests that the model
lacks the universality property claimed in [17]. This may, at least partially, provide a
further explanation for the poor performance of the radiation law in the prediction of
intra-urban flows [24].

The bigger discrepancies between prediction and simulation compared to the gravity
model arise in this case from the continuous assumption employed in the analytical form
of εr, as Eq. (2.15) makes use of a continuous approximation to estimate the population
within the disk sij around the origin location. While at long ranges this effect is masked by
an apparent increase in the homogeneity of the population density, shorter distances make
the discrete structure of the synthetic population more prominent. A further limitation
caused by the simulated system is also represented by boundary effects which are especially
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2. RESULTS: ANALYSIS OF THE TRIPOINT SCALING ERROR

(a) Sampled Tripoint: ε vs rib (b) Sampled Tripoint: ε vs rjk

(c) Explicit Tripoint: ε vs rib (d) Explicit Tripoint: ε vs rjk

Figure 3.5: Relationship of the scaling error with distance in the radiation model. The
blue markers indicate the numerical results obtained through the sampled tripoint algorithm in (a)-
(b) and the explicit tripoint algorithm in (c)-(d), plotted as a function of rib (left) and rjk (right).
The grey curve represent the analytical ε for the radiation model in the tripoint aggregation. The
confidence interval in the analytical curve is estimated by computing ε with 〈rjk〉 = 0.5 ± 0.3 (a)
and 〈rib〉 = 4.3± 0.3, so as to obtain the correct prediction for the simulated configuration. In the
bottom panel, the fixed distance values are rjk = 0.5 (c) and rib = 4 (d).
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3. DISCUSSION

relevant for the radiation model, due to the fact that, for locations close to the edges, the
total population within the disk is systematically underestimated. However, due to the
fractional nature of the measure we study, the bias introduced by this effect is minimised.

We further note that we find a systematic offset of the analytical curve from the sim-
ulated values, which is not reflected between the two tripoint approaches. We attribute
this to the asymmetries between rij and rik that characterise the sampled tripoint con-
figuration, in which nearest-neighbours pairs are not exactly equidistant from the origin
location i. In contrast, this symmetry is held in the explicit tripoint method.

3. Discussion
The proposed method successfully reproduces, within the limitations due to finite-size
effects and the discretisation of space, our theoretical predictions and extracts the key
variation in the estimated flows when two locations are clustered together in a uniform
distribution of locations with homogeneous population density. In agreement with our
analytical results, we find that the discrepancies between predicted flows at the original
resolution level and after clustering two sites vanish in the expected distance range. This
spatial range is found to reflect the heuristic observations that:

• the intra-cluster distance rjk must be sufficiently small so as to prevent nearby sites
from altering the estimation

• the origin-destination distance rib should be large enough so that the small varia-
tions in the location distribution due to the clustering do not produce significant
differences

Accordingly, we conclude that we can identify an optimal range wherein the scaling error
ε can both be accurately predicted and is sufficiently small, which we call the scaling
regime.

No significant discrepancy is observed between the results produced using the two
different tripoint approaches, the sampled tripoint and the explicit one, a clear indication
of their equivalence. The fluctuations observed in the sampled tripoint (Fig. 3.3a, 3.3b)
are an expected effect of the stochastic nature of the approach. Moreover, in this case,
the degree of agreement with the analytical result also decreases more rapidly at small
origin-destination scales (Fig. 3.3a), since the difference between rij and rik ceases to be
negligible, in contrast to what is assumed in the derivation.

With regards to the performance of the gravity and the radiation model, we observe
that in the latter the error rises considerably quicker, suggesting the model adapts less
to small changes in the population distribution. This can be easily understood in terms
of the mathematical formulation of the model, which implies that the trip probability
does not directly depend on metrical distance and therefore its variation with the spatial
scale is particularly nontrivial. This is also consistent with findings presented in exiting
literature [13, 25] and highlights that the parameter-free property of the radiation model
may represent a drawback with respect to the model’s reliability in a multiscale context.
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Chapter 4

Hierarchical Spatial Scaling

1. Methodology motivation
Thus far we have considered a toy model that allowed us to quantitatively explore the
correlation between changes in the predicted flow and the distance measures of interest
within a square lattice populated by randomly sampled locations with uniform popula-
tion density. In order to evaluate to what extent the gravity and the radiation model can
adapt to varying spatial scales in a non-uniform population distribution, we now extend
our multiscale analysis to a more realistic scenario. Using our scaling error model, we
attempt to capture the change in the predicted mobility flow when the system undergoes
a complex renormalisation process which changes the spatial scale over which the inter-
actions occur. This also allows us to determine to what extent our scaling error model
is consistent with a more generic spatial system. In this respect, the simple tripoint
procedure, although useful in capturing some of the fundamental effects related to the
models’ scale-dependence, cannot suffice, due to its oversimplification of some important
spatial features that characterise real population distributions. Therefore, building upon
our first method, we relax the approximations previously imposed (see Chapter 2, Section
2) and consider a non-uniform distribution of locations with inhomogenous population
density. We then iteratively carry out a coarse-graining procedure to generate a hierarchy
of population distribution levels with different granularity.

Thanks to the availability of spatial data at a sufficiently high resolution, we choose to
conduct our analysis on the real population distribution of England, Wales and Scotland.
However, despite the clear advantages of employing a real population distribution, this
presents several challenges from a mathematical and computational viewpoint. Firstly,
due to the heterogeneity of the distribution, we can no longer simplify the problem and
identify an analytical expression for our scaling error ε. Therefore, we approach this by
analysing numerical results only. Secondly, handling a dataset of over 41,000 locations
significantly increases the computational cost of the simulation. Hence, on the ground of
computational ease, we restrict our analysis to subsections of the entire dataset, with a
particular emphasis on urban areas.
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2. THE POPULATION DATASET

2. The population dataset
The dataset used for our analysis of a real spatial system is the CDRC 2011 Population
Weighted Centroids (LSOA/Data Zone) dataset [26]. This socio-geographical dataset
comprises of population-weighted centroids of the Census Output Areas of England, Wales
and Scotland obtained from the most recent census, undertaken in March 2011. The
partitioning, which has a resolution of 20 m, follows the Lower Layer Super Output Areas
(LSOA), regions obtained by aggregating adjacent areas at the lowest geographical level
produced by census estimates, the Census Output Areas (OA). LSOAs were introduced
with the aim of improving small area statistics [27] and are defined so as to comprise
a population ranging from 1,000 to 3,000 people and a number of households varying
between 200 and 1,200. The dataset features a total number of 41,729 spatial units, each
associated with the Eastings/Northings coordinates of its population-weighted centroid
and the total population residing within the area.

2.1 Data preprocessing

We choose two representative urban areas within our dataset, Greater London and Birm-
ingham, to perform our multiscale analysis. The choice to focus on the two cities with
the highest population in the UK is motivated by both practical and scientific reasons:
on the one hand this allows us to perform faster simulations and analyses, on the other
it ensures that the coarse-graining procedure can be applied to long enough distances
without incurring in boundary problems such as edge effects or the presence of natural
barriers, which may introduce discontinuities in human interactions [28, 29]. We set arti-
ficial boundaries around the urban areas so as to include all the main road networks and
extract from the dataset the corresponding units by searching for the Eastings/Northings
coordinate pairs of the population-weighted centroids falling within the boundaries.

For the purposes of our analysis, we require two types of information from this dataset,
the pairwise distance rij between every site, and the total population mi residing within
each unit. We find the first by computing the distance matrix R, taking care to employ
the condensed form of the matrix for maximum computational efficiency 1. We note
that, since the coordinate system used is based on the Transverse Mercator projection,
the distance between two points does not generally correspond to the distance measured
on the surface of the earth, but we can safely neglect this effect since in our case the
distortion does not exceed 0.01% [30]. A further preprocessing step was carried out to
merge the data with an additional dataset containing information relative to the surface
area covered by each unit [31], necessary for the purpose of the parameter

City Number of Units Surface Area (km2) Population Size
London 6,061 3,852 10,172,889
Birmingham 2,415 3,777 3,906,168

Table 4.1: Dataset Statistics
1 We use the pdist function from the SciPy package
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
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3. METHOD: RESCALING PROCEDURE

(a) Population distribution (b) Distance Distribution

Figure 4.1: Frequency distribution of population size and inter-unit distance. For both
the datasets relative to London and Birmingham, the relative frequency of the population size
displays a similar distribution (a) and the pairwise distance (b) can be fitted by a Gaussian. Given
their consistency, a comparison between the two areas can be carried out.

estimation in the gravity model. Following the extraction of the data points of interest,
we then use these to construct a fine-grained population distribution which corresponds
to the first resolution level of the hierarchy.

We present an overview of the areas analysed in Table 4.1. The population distribution
and spatial distance distribution at the finest level were plotted for both cities to ensure
consistency (Fig. 4.1).

3. Method: rescaling procedure
3.1 Hierarchical agglomerative clustering

As previously stated, we seek to coarse-grain the population distribution so as to con-
struct a hierarchical system composed of decreasing granularity levels. Analogously to
the process adopted for the tripoint analysis (Chapter 3, Section 1), this then allows us to
compute the scaling error ε resulting from variations in the distribution at each of these
levels. To this end, we require a renormalisation procedure that iteratively rescales the
system, i.e. that groups sets of neighbouring locations {i} together and replaces them
with a single site A of population mA = ∑

imi. In other words, our aim is to produce
a set of levels where the average distance between neighbouring locations progressively
increases, thus allowing us to “zoom out” and compute the mobility flows on a coarse-
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Figure 4.2: Agglomerative hierarchical clustering dendrogram representing the 4 highest
clustering levels for the London dataset. The y-axis indicates the pairwise Euclidean distance
between the clusters, used as the dissimilarity index between them. The 28 original units are
grouped with their closest location at the first stage and the process is iteratively carried out until
all units are grouped belong to one agglomeration. As a result, the effective distance between the
locations increases at each step. This mechanism allows us to define our hierarchy by choosing
appropriate maximum clustering distance values (dmax).

grained picture of the spatial system. In order to distinguish between two levels, we label
units at the pre-clustering stage with {i, j, k...} and use {A,B, C...} to denote the clusters.

To accomplish this, we make use of the agglomerative hierarchical clustering algorithm
[32], which we apply to our fine-grained population distribution. This is an efficient
unsupervised machine learning technique 2 that produces a dendrogram of the input data
(Fig. 4.2), in which each level is built from the previous on the base of a dissimilarity
index, here chosen to be the Euclidean distance between locations.

The algorithm takes as input the N ×N distance matrix R

R =


0 r12 . . . r1N
r21 0 . . . r2N
... ... . . . ...
rN1 rN2 . . . 0

 , (4.1)

where the ijth entry is rij, the pairwise distance between element i and j, and N is the
total number of elements in the set (spatial units in a geographical area, in our case). The
set is partitioned initially into singleton clusters, i.e. subsets containing only one element,
2 We use the SciPy implementation of the algorithm, which has O(n2) time complexity [33].
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(a) (b)

Figure 4.3: Voronoi tessellation of London clusters at two coarse-graining levels, dmax =
2000 m (a) and dmax = 5000 m. As the resolution level is decreased, the average unit surface
and average inter-site distance increases. Therefore, by applying the mobility models on the same
population distribution at different clustering levels enables a comparison of the models’ predictions
across diverse spatial scales.

and subsets are subsequently joined together into larger clusters in a hierarchical fashion,
by merging, at each step, pairs of elements with the smaller distance between them.
Therefore, at the final step, the algorithm always returns one cluster containing all the N
initial elements. Since we are not interested in such a coarse partitioning of our spatial
data, at each level, we introduce a threshold, dmax, which restricts the maximum distance
between any two neighbouring clusters. Once this distance is reached, the algorithm stops
and returns the sets of clusters forming a given level. The use of the threshold therefore
enables us to have better control over the spatial scale characterising each level. We note
that a key difference with the previous tripoint method is that geographical locations are
here not points but regions that extend over a surface area. Therefore, their position is not
uniquely defined and choosing how to assign spatial coordinates to a new cluster without
introducing bias in the statistical distribution is a particularly puzzling problem. This
issue is known in the literature as the modifiable areal unit problem [34] and, despite being
known to researchers for a long time, does not have a definite solution. Our approach to
overcome this problem is here to make use of the centroid method [35], whereby at each
iteration, the distance matrix R is updated with the distance between the centroids cA
and cB of all pairs of clusters {A,B} so that their pairwise distance becomes

rab = ||ca − cb||2, (4.2)

where A = {i} is the set of units aggregated into cluster A and B = {j} is the set of units
aggregated into cluster B. Moreover, the choice of employing the centroids as the position
of aggregations of spatial units reflects a common practice in the field of spatial analysis,
thanks to the fact that this is often found to be sufficiently consistent with empirical

26



3. METHOD: RESCALING PROCEDURE

(a) Population Distribution (b) Distance distribution

Figure 4.4: Frequency distribution of population size and inter-unit distance at 3 of the
clustering levels used in our study for the London dataset. While the coarse-graining process pre-
serves the overall distance distribution and only affects its mean value and spread, the population
distribution is effectively made more homogeneous compared to the original partitioning.

observations of mobility flows [19, 36]. Although the population-weighted centroid is used
in the original dataset instead, the clustering procedure here used effectively smooths out
the population distribution within a cluster (i.e. this is uniformly distributed across the
entire surface area), so that the population-weighted centroid corresponds to the centroid
itself. An example of the resulting partitioning resulting from carrying out the clustering
procedure here described is illustrated in Figure 4.3 for the London region.

The choice of a clustering algorithm is not unique and a number of alternative algo-
rithms, like the K-means, have also been used to group administrative units in the context
of human mobility [16]. However, these methods often do not allow for an explicit use
of distance as a parameter in the clustering and instead provide control over the total
number of clusters produced or the number of elements within each cluster. Since we are
not concerned with either of these two measures directly, the hierarchical clustering we
make use of presents clear advantages, since in our case the spatial scale is the central
parameter of the analysis.

3.2 Extracting the hierarchical scaling error

The population distribution thus defined at each level can be used to simulate the mobility
flow between clusters according to both the gravity and the radiation model and infer how
the predicted flow is affected by the change in spatial scale by computing the corresponding
scaling error ε. Unlike in the simple tripoint case, the scaling error may now be defined
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relative to multiple granularity levels and therefore we employ the original population
distribution (base level) as a unique reference point for the hierarchy.

The stages of the complete renormalisation scheme are outlined below:
1. Compute the original OD matrix T0 of the fine-grained population distribution

2. Define n resolution levels by choosing a set of values for the maximum inter-cluster
distance {d1

max, d
2
max, ..., d

n
max}

3. Apply the hierarchical agglomerative clustering to form the n lower-resolution levels

4. Compute the OD matrix Tn at each n level by running the mobility models
In order to verify that our algorithm yields the correct output, simple tests were

performed by applying the clustering routine to small sections of the dataset comprising
of ∼ 100 locations and analysing the resulting classification of units within clusters. Tests
were then carried out on the regions of interests, London and Birmingham, and the
resulting frequency distribution of inter-site distance and population size was plotted to
verify Several possible values for the threshold distance were also tested to determine our
hierarchical population distribution and found that the range 300m < dmax < 1300m,
with an interval of 200m provides a suitable set of resolution levels (Fig. 4.4).

Design of efficient matrix computations
Since this approach involves aggregating an arbitrary number of units at each step and
we are interested in extracting a meaningful measure of the scaling error in the system,
it is useful to define the error matrix E, where each entry εAB represents the fractional
difference in the flow from cluster A to cluster B compared to the sum of the flows from
{i},∀i ∈ A to {j},∀j ∈ B, as defined in Eq. (2.1). These poses two challenges: one is
that of determining how to accurately extract from the matrix E a measure that best
encapsulates the error introduced in the whole system. A second challenge regards how
to efficiently implement the necessary matrix operations.

In order to overcome the two aforementioned challenges, we designed an algorithm
that performs a renormalisation scheme on the E matrix. The technique makes use of
efficient vectorised code to compute E at each level. In fact, particular care is required
in carrying out this step, since, in order to subtract the mobility flow at a coarse-grained
level from the flow at the base level, the dimensionality of the origin-destination (OD)
matrix at the higher-resolution level needs to be reduced to match that of the OD matrix
at the lower-resolution level. For example, if the pre-clustering distribution features N
locations and, following the clustering step, the number of units is reduced to M < N ,
the error matrix E will have dimension M × M and hence can only result from the
(negative) addition of 2 OD matrices of equal dimensionality. To this end, we develop a
dimensionality reduction technique, consisting of a reordering step and a summation step,
as described below and illustrated in Figure 4.5. The key advantage of this method is
that the scaling error matrix can then be easily computed from the straightforward matrix
subtraction T′n −Tn. Several variations of this algorithm were tested before finding this
was the most computationally efficient.
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3. METHOD: RESCALING PROCEDURE

(a) original DM (b) reordered DM

(c) combined ODM (d) reduced ODM

Figure 4.5: Renormalisation procedure of the OD matrix. (a) The base-level distance
matrix (DM) is computed on the higher-resolution population distribution. (b) Entries in the DM
are reordered according to the labels obtained from the cluster classification so that units grouped
within the same cluster correspond to adjacent rows and columns. (c) All the flows within the
quadrants thus found are summed to obtain the resulting M ×M combined OD matrix. (d) The
M ×M reduced OD matrix T′ is obtained by running the mobility model on the new clusters
distribution. Here, the radiation model is used to compute the ODMs.
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4. RESULTS & DISCUSSION: THE HIERARCHICAL SCALING ERROR

Figure 4.6: Absolute value of the scaling error in the gravity (blue) and radiation (red)
model at the a coarse-graining level with dmax = 700 m. In the range considered, the radiation
model generally performs worse than the power-law gravity model, yielding a significantly bigger
error. From rAB > 60 km, however, the two models yield comparable results.

4. Results & Discussion: the hierarchical scaling error
In this section, in analogy with the analysis carried out for the tripoint clustering method,
we highlight the main results obtained through the analysis of the scaling error matrix E
as a function of the inter-cluster distance rAB, which we will call distance.

4.1 Performance of the gravity and the radiation model

Figure 4.7 displays the mean value extracted from the E matrix at each coarse-graining
level for the population distribution of London (top) and Birmingham (bottom) across the
6 levels composing the hierarchy in the power-law gravity model (left) and the radiation
model (right). As previously done for the tripoint analysis, we employ Lenormand’s
functional relationship to obtain an estimate of the distance parameter γ.

In order to provide a clear parallel analysis of the two models, we distinguish two
separate scaling regimes, one characterising the distance range 0 < r . 10 km, which we
will refer to as the short-range regime, and one characterising the distance range r & 20
km, the long-range regime. Within the small range regime, both models, as expected,
produce a higher scaling error at low inter-cluster distances. Although this can be at-
tributed in both cases to an increased apparent homogeneity of the location distributions
when estimating flows at higher distances, it results from different mechanisms in the two
models.
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4. RESULTS & DISCUSSION: THE HIERARCHICAL SCALING ERROR

(a) London – Gravity Model (b) London – Radiation Model

(c) Birmingham – Gravity Model (d) Birmingham – Radiation Model

Figure 4.7: Relationship of the scaling error with inter-cluster distance in the power-law
gravity model (left) and the radiation model (right) for London (top) and Birmingham (bottom).
The clustering levels, plotted each in a different colour, correspond to a maximum inter-cluster
distance in the range 300 m < dmax < 1300 m. The absolute value of ε increases with higher
clustering level, since the differences introduced in the popoulation distribution become more
significant as the system is upscaled. The standard errors resulting from the data binning process
are shown through the error bars, but are in most cases smaller than the data point.
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5. METHOD: OPTIMISATION PROCEDURE FOR THE GRAVITY MODEL

For the gravity law, since the flow is directly dependent on the distance, variations in the
spatial structure at a sufficiently long distance will not significantly affect the predictions.
In the case of the radiation model, instead, a heuristic explanation may come from con-
sidering the disk sij (Fig. 1.1): if we compare the relative difference produced by small
variations of the spatial distribution within a disk of small radius with that produced
from variations within a considerably bigger one, it is clear that a smaller scaling error
will result in the latter. Hence, at this distance range, the main difference between the
gravity and the radiation model resides in the magnitude of the scaling error.

In the long range regime, however, the two models exhibit different behaviour. While
the radiation model yields a scaling error which clearly decreases with the inter-cluster
distance, this is reflected in the gravity model only for high resolution levels. This is
a clear indication of the inadequacy of a unique value of the distance parameter γ to
provide consistent predictions across different resolution levels, even for small changes
in the spatial scale. When aggregating zones to a resolution of 700 m or lower (higher
dmax), as done in our 3rd clustering level, the model underestimates the mobility flow
compared to the base level. This behaviour is more clearly shown in Figure 4.6, where
the absolute value of ε is plotted for the gravity (blue) and radiation model (red) at the
3rd clustering level. However, despite this, the gravity model outperforms the radiation
model, confirming that the latter cannot offer satisfactory multiscale predictions [37].

5. Method: optimisation procedure for the gravity model
We now explore a simple approach aimed at tuning the deterrence function in the gravity
model so as to minimise the error introduced when changing coarse-graining level. In
other words, we devise a procedure to render the gravity model more robust to changes in
the spatial scale, without introducing additional parameters. As the deterrence function
and its distance parameter γ fully characterise the spatial component in the model, we
can probe the parameter space to extract the value that optimises the scaling error ε.
Although a number of studies suggest a relationship between the distance exponent γ and
the fractal dimension of the system [20, 38], this avenue has not been proven successful.
Instead, we adopt a different perspective and attempt to treat this as an optimisation
problem.

We define the following objective function

Z(γ) =
√∑
AB
|εAB(γ)|2, (4.3)

where the sum is over all the possible clusters pairs within the configuration at a given
coarse-graining level and εAB(γ) the corresponding entry in the E matrix. As an effi-
cient computational technique to identify the optimising parameter, we employ the SciPy
package implementation of the quasi-Newton algorithm [39]. In order to ensure that the
optimisation of the function Z(γ) leads to a meaningful parameter estimation, we test its
convexity of the objective function by plotting it as a function of the parameter and find
that it is sufficiently well-behaved. Given the time constraint, we implement this method
only for the London population distribution and the power-law gravity model.
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6. RESULTS & DISCUSSION: THE OPTIMISED GRAVITY MODEL

(a) (b)

Figure 4.8: Scaling error in the optimised gravity model on the London dataset. The
error is computed relative to the flow estimated through the power-law gravity model on the
base-level distribution with parameter γ = 1.33, estimated based on the empirical relationship in
[19]. For comparison, we plot in (b) the scaling error at level 3 (maximum inter-cluster distance
dmax = 700 m) in the power-law gravity model with γ computed through Lenormand’s empirical
relationship (blue) and through our optimisation method (green). A significant reduction in the
error is observed through our approach.

6. Results & Discussion: the optimised gravity model
6.1 Performance of the gravity model with rescaled parameter γ

The effect described in Section 4.1 is an intrinsic property of the gravity model and our
results provide clear evidence that the choice of resolution level significantly affects the
fitting of the distance parameter. This has important implications in the calibration of
the model’s parameters and can explain the need to often employ different exponents even
within the same dataset. Nevertheless, since this is a structural property of the gravity
model, the effect cannot be completely eliminated without introducing further tunable
parameters. We disregard this solution on the grounds that multiple parameters are
an undesirable feature, especially in data-scarce contexts. However, our results suggest
that, provided that a sufficiently accurate base level can be employed to estimate the
spatial interaction at a fine resolution, the deterrence function can be adjusted so as to
minimise the discrepancy in the estimated flow of a lower resolution level. Although this
finding would require further validation through fitting of empirical flows, we provide a
preliminary validation of this hypothesis by examining the mean scaling error across the
whole system as a function of the inter-cluster distance when our rescaled parameter γ̃
is used in alternative to the one proposed by Lenormand et al. (2016). In figure 4.8 we
show that our method provides a notable improvement in the multiscale performance of
the power-law gravity model, with a reduction of the scaling error both in the short-range
and in the long-range regime.
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6. RESULTS & DISCUSSION: THE OPTIMISED GRAVITY MODEL

Figure 4.9: Distance parameter as a function of the average unit surface as found by
Lenormand et al. (2016). We employ this functional relationship to estimate the mobility flows at
the base granularity level. Taken from [19].

6.2 Scaling relations of the distance parameter γ

In analogy with the work of Lenormand et al. (2016) [19], we present here the functional
relationship between the rescaled distance exponent γ̃ obtained through our optimisation
method and three different distance measures: the average unit surface 〈S〉, the maxi-
mum inter-cluster dmax and the mean inter-cluster distance 〈rAB〉. Figure 4.10 shows the
observed scaling. We find that our γ̃ scales linearly with both linear distance measures.
An estimation of the scaling parameters with linear distance can be easily extracted from
a linear regression fit and the slope α and intercept β are shown in the top panel of Figure
4.10 and summarised in Table 4.2. We also show that our rescaled parameter follows a
power law when studied as a function of the surface area. By plotting the obtained values
against the mean unit surface on a logarithmic scale, we recover the following functional
relationship

γ̃ = α〈S〉β. (4.4)

We note, however, that, although our method provides a remarkable improvement in
the performance of the gravity model for the dataset examined, a systematic assessment
of its validity on a more comprehensive dataset would be necessary to establish whether
consistent results are obtained across different urban areas.

Measure α β

Average unit surface 〈S〉 1.342± 0.002 0.0257± 0.0012
Average inter-cluster distance 〈rAB〉 (1.41± 0.14)× 10−5 1.00± 0.04
Maximum inter-cluster distance dmax (6.1± 0.3)× 10−5 1.320± 0.003

Table 4.2: Parameter values and their standard error extracted from the linear regression fit.
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6. RESULTS & DISCUSSION: THE OPTIMISED GRAVITY MODEL

(a)

(b) (c)

Figure 4.10: Parameter values as a function of distance and surface area. In (a), a
log-log plot of γ̃ obtained by optimising the scaling error at 8 clustering levels on the London
dataset shows the functional relationship with the average cluster size, which significantly differs
from that found by Lenormand et al. (2016). (b) and (c) show the linear relationship between γ̃
and linear distance, found through the same process. In all cases the red line is the best linear fit.
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Chapter 5

Conclusions

In this report we have presented a quantitative investigation of the role of spatial scales
in human mobility modelling. To this end, we have adopted a dual approach: we first
built the mathematical tools to compare and analyse the multiscale performance of the
most widely used models, gravity and radiation, and then developed the computational
simulations to reproduce this analysis and validate our theoretical predictions.

Through this analysis, we have identified a number of deficiencies in the treatment of
diverse spatial scales and showed that this leads in both models to inconsistent predictions
when studying the same population distribution at different resolution levels. In this
respect, we have shown, in agreement with earlier studies, that the multiscale performance
of the gravity model generally outperforms that of the radiation model.

The key results and contributions of our project can be summarised as follows:

• Scaling error: we proposed a new metric that encapsulates the error introduced
when arbitrarily grouping spatial units and re-estimating the flows in a coarse-
grained spatial system.

• Systematic comparison of the gravity and radiation model: based on our metric
ε and on pure theoretical grounds, we provided simulations of idealised and more
realistic statistical distributions of spatial units with the purpose of comparing the
predicted mobility flows between different models on an equal footing.

• Optimisation procedure for the gravity model: we suggested a new approach that,
given a sufficiently accurate calibration at a fine-grained population distribution, al-
lows to tune the distance parameter without further use of empirical data, improving
upon previously found empirical formulae.

Our results may therefore be useful to practitioners to gain a better understanding
of the correlation between the degree of accuracy of the predicted mobility flows and the
distance range considered, as well the as the granularity of the data. Our findings may
also serve as a starting point for a broader investigation of the scale-dependence of other
mobility models.
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1. THOUGHTS FOR FUTURE RESEARCH

1. Thoughts for future research
Although successful in providing clearer insights into the scale-dependence of mobility
models, our research presents some limitations: although bigger datasets comprising of
global population data at a similar spatial resolution [40] were briefly explored, these were
not employed for the purposes of our final analysis, due to time constraints. It would be
an interesting extension of our work to employ these data sources and replicate our study
on a bigger scale. Moreover, a comparison with real mobility data is necessary to comple-
ment our approach and fully validate our findings beyond the theoretical level. A more
sophisticated coarse-graining procedure would also need to be devised to fully account
for the high heterogeneity of different geographical distributions above the city level and
in rural areas. With regards to this, a possible direction could be the implementation of
an adaptive grid refinement method that selectively coarse-grains a system by correctly
determining which units may be grouped together for the purposes of the flow estimation.
Alternatively, coarse-graining procedures specifically designed for mobility networks, like
the one proposed in [41], may be explored. Finally, a detailed comparison of the scaling
error obtained by making use of different clustering techniques could be the subject of a
separate study.

Another interesting direction for future research would be to exploit our approach for
the optimisation of the scaling error with the aim of increasing the multiscale performance
of a generic mobility framework.

All figures in the report were created by me and my project partner, unless explicitly stated.
The software package to simulate mobility flows and analyse them using the approach in this report can
be found at https://github.com/jbremz/human_mob.
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Appendix A

The normalisation factor in the
gravity model

1. A numerical validation
We carried out numerical tests to establish the validity of the approximations made in the
derivation of ε in the gravity model (Eq. (2.10)). Among these, particularly important is
they key assumption that the normalisation constants in the pre- (ki) and post-clustering
(k̃i) phase can be considered to be approximately equal. As shown in Fig. A.1, we find
that a distribution of N = 100 locations, as used in our simulation, is sufficient to allow
for this approximation without introducing significant bias and offers a fair representation
of the asymptotic limit (N � 1).

(a) (b)

Figure A.1: Ratio of the normalisation factor in the exponential gravity model at the pre-
clustering (ki) and post-clustering (k̃i). In (a) the ratio is plotted as a function of the intra-cluster
distance rjk, showing a negligible difference between the normalisation factors across the whole
range. In (b) the ratio is plotted as a function the total number of units N , indicating that the
factors are approximately equal provided that N & 100.
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Appendix B

Tripoint scaling error in the
exponential gravity model

Similarly to to Chapter 3 2.1, we present here the results for the scaling error ε obtained in
the tripoint configuration by using an exponential distance decay function in the gravity
model.
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(a) Sampled Tripoint: ε vs rib (b) Sampled Tripoint: ε vs rjk

(c) Explicit Tripoint: ε vs rib (d) Explicit Tripoint: ε vs rjk

Figure B.1: Relationship of the scaling error with distance in the exponential gravity
model. The blue markers indicate the numerical results obtained through the sampled tripoint
algorithm in (a)-(b) and the explicit tripoint algorithm in (c)-(d), plotted as a function of rib

(left) and rjk (right). The grey curve represent the analytical error ε. According to the functional
relationship in [19], we use γ = 0.69. All other parameters are the same as in Ch. 3 Sec. 2.1. The
scaling error is here below 0.02% even at considerably small origin-destination separation, when
this is comparable to the typical inter-site distance (rib ' 1). Therefore the exponential gravity
model outperforms the power-law form by yielding an error that is 2 orders of magnitude smaller
in the range considered.
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Appendix C

The role of population density

In order to fully validate our tripoint method, in which we treated the population distri-
bution as uniform in space, we investigated what effect a non-uniform distribution has on
the scaling error associated with the coarse-graining hierarchy described in Chapter 4.

One could in fact argue that the heterogeneity of the population distribution might
introduce an additional variable compared to the simplified model of the tripoint system,
thus rendering the two fundamentally different. We first note that, in virtue of the fact
that, by definition, ε is a fractional error, we expect the population to play a marginal
role in determining the magnitude of the error. Figure C.1 provides evidence that is is
indeed the case and therefore further corroborates our approach.

Figure C.1: Average scaling error at a coarse-graining level corresponding to a maximum
inter-cluster distance dmax = 1000m (London dataset). The error is computed using the original
London distribution (OLD) of locations, the same spatial distribution but with uniform masses
(ULD), the mass distribution randomly assigned to the London location distributions LD (RLD),
and then a random distribution with uniform masses (RUD). While the spatial location distribution
affects the scaling error, the difference between a heterogeneous and a homogeneous population
distribution is negligible.

44


	Introduction & Overview
	Theoretical Analysis
	The Tripoint Model
	Hierarchical Spatial Scaling
	Conclusions
	Appendices
	The normalisation factor in the gravity model
	Tripoint scaling error in the exponential gravity model
	The role of population density

